【評判】Python Data Science with Pandas: Master 12 Advanced Projects


  • Python Data Science with Pandas: Master 12 Advanced Projects
  • Python Data Science with Pandas: Master 12 Advanced Projectsで学習できる内容
    本コースの特徴
  • Python Data Science with Pandas: Master 12 Advanced Projectsを受講した感想の一覧
    受講生の声

講座情報

    レビュー数

  • ・週間:0記事
  • ・月間:0記事
  • ・年間:0記事
  • ・全期間:1記事
\30日以内なら返金無料/
   Udemyで受講する   

レビュー数の推移

直近6か月以内に本講座のレビューに関して記載された記事はありません。


学習内容

Advanced Real-World Data Workflows with Pandas you won´t find in any other Course.
Working with Pandas and SQL-Databases in parallel (getting the best out of two worlds)
Working with APIs, JSON and Pandas to import large Datasets from the Web
Bringing Pandas to its Limits (and beyond...)
Machine Learning Application: Predicting Real Estate Prices
Finance Applications: Backtesting & Forward Testing Investment Strategies + Index Tracking
Feature Engineering, Standardization, Dummy Variables and Sampling with Pandas
Working with large Datasets (millions of rows/columns)
Working with completely messy/unclean Datasets (the standard case in real-world)
Handling stringified and nested JSON Data with Pandas
Loading Data from Databases (SQL) into Pandas and vice versa
Loading JSON Data into Pandas and vice versa
Web-Scraping with Pandas
Cleaning large & messy Datasets (millions of rows/columns)
Working with APIs and Python Wrapper Packages to import large Datasets from the Web
Explanatory Data Analysis with large real-world Datasets
Advanced Visualizations with Matplotlib and Seaborn

詳細

***Fully updated and revised in October 2024***


Welcome to the first advanced and project-based Pandas Data Science Course!

This Course starts where many other courses end: You can write some Pandas code but you are still struggling with real-world Projects because

  • Real-World Data is typically not provided in a single or a few text/excel files -> more advanced Data Importing Techniques are required

  • Real-World Data is large, unstructured, nested and unclean -> more advanced Data Manipulation and Data Analysis/Visualization Techniques are required

  • many easy-to-use Pandas methods work best with relatively small and clean Datasets -> real-world Datasets require more General Code (incorporating other Libraries/Modules)

No matter if you need excellent Pandas skills for Data Analysis, Machine Learning or Finance purposes, this is the right Course for you to get your skills to Expert Level! Master your real-world Projects!

This Course covers the full Data Workflow A-Z:

  • Import (complex and nested) Data from JSON files.

  • Import (complex and nested) Data from the Web with Web APIs, JSON and Wrapper Packages.

  • Import (complex and nested) Data from SQL Databases.

  • Store (complex and nested) Data in JSON files.

  • Store (complex and nested) Data in SQL Databases.

  • Work with Pandas and SQL Databases in parallel (getting the best of both worlds).

  • Efficiently import and merge Data from many text/CSV files.

  • Clean large and messy Datasets with more General Code.

  • Clean, handle and flatten nested and stringified Data in DataFrames.

  • Know how to handle and normalize Unicode strings.

  • Merge and Concatenate many Datasets efficiently.

  • Scale and Automate data merging.

  • Explanatory Data Analysis and Data Presentation with advanced Visualization Tools (advanced Matplotlib & Seaborn).

  • Test the Performance Limits of Pandas with advanced Data Aggregations and Grouping.

  • Data Preprocessing and Feature Engineering for Machine Learning with simple Pandas code.

  • Use your Data 1: Train and test Machine Learning Models on preprocessed Data and analyze the results.

  • Use your Data 2: Backtesting and Forward Testing of Investment Strategies (Finance & Investment Stack).

  • Use your Data 3: Index Tracking (Finance & Investment Stack).

  • Use your Data 4: Present your Data with Python in a nicely looking HTML format (Website Quality).

  • and many more...

I am Alexander Hagmann, Finance Professional and Data Scientist (> 7 Years Industry Experience) and best-selling Instructor for Pandas, (Financial) Data Science and Finance with Python. Looking forward to seeing you in this Course!


\目次や無料視聴も掲載中/
他の情報を確認する

本コースの特徴

本コースの特徴を単語単位でまとめました。以下の単語が気になる方は、ぜひ本講座の受講をオススメします。


開発
AWS
Docker
もの
よう
勉強
CircleCI
React
エンド
キャッシュ
名称
基準
感動
環境
苦労
説明
選定
Django
EC
Python
ReactDjango
Terraform
UI
Udemy
コンテナ
デザイン
デタ
デタプロバイダ
技術
株価

受講者の感想

本講座を受講した皆さんの感想を以下にまとめます。


難しかっ

レビューの一覧

 ・独学でここまで出来た! pandas-datareaderによる株価表示ポートフォリオ(React/MUI/Typescript/Django/Nginx/CircleCI/Docker/Terraform/AWS)[2021-05-17に投稿]

udemyで受講