直近6か月以内に本講座のレビューに関して記載された記事はありません。
In order to set realistic expectations, please note: These questions are NOT official questions that you will find on the official exam. These questions DO cover all the material outlined in the knowledge sections below. Many of the questions are based on fictitious scenarios which have questions posed within them.
The official knowledge requirements for the exam are reviewed routinely to ensure that the content has the latest requirements incorporated in the practice questions. Updates to content are often made without prior notification and are subject to change at any time.
Each question has a detailed explanation and links to reference materials to support the answers which ensures accuracy of the problem solutions.
The questions will be shuffled each time you repeat the tests so you will need to know why an answer is correct, not just that the correct answer was item "B" last time you went through the test.
NOTE: This course should not be your only study material to prepare for the official exam. These practice tests are meant to supplement topic study material.
Should you encounter content which needs attention, please send a message with a screenshot of the content that needs attention and I will be reviewed promptly. Providing the test and question number do not identify questions as the questions rotate each time they are run. The question numbers are different for everyone.
As a candidate for this exam, you should have subject matter expertise in integrating, transforming, and consolidating data from various structured, unstructured, and streaming data systems into a suitable schema for building analytics solutions.
As an Azure data engineer, you help stakeholders understand the data through exploration, and build and maintain secure and compliant data processing pipelines by using different tools and techniques. You use various Azure data services and frameworks to store and produce cleansed and enhanced datasets for analysis. This data store can be designed with different architecture patterns based on business requirements, including:
Management data warehouse (MDW)
Big data
Lakehouse architecture
As an Azure data engineer, you also help to ensure that the operationalization of data pipelines and data stores are high-performing, efficient, organized, and reliable, given a set of business requirements and constraints. You help to identify and troubleshoot operational and data quality issues. You also design, implement, monitor, and optimize data platforms to meet the data pipelines.
As a candidate for this exam, you must have solid knowledge of data processing languages, including:
SQL
Python
Scala
You need to understand parallel processing and data architecture patterns. You should be proficient in using the following to create data processing solutions:
Azure Data Factory
Azure Synapse Analytics
Azure Stream Analytics
Azure Event Hubs
Azure Data Lake Storage
Azure Databricks
Skills at a glance
Design and implement data storage (15–20%)
Develop data processing (40–45%)
Secure, monitor, and optimize data storage and data processing (30–35%)
Design and implement data storage (15–20%)
Implement a partition strategy
Implement a partition strategy for files
Implement a partition strategy for analytical workloads
Implement a partition strategy for streaming workloads
Implement a partition strategy for Azure Synapse Analytics
Identify when partitioning is needed in Azure Data Lake Storage Gen2
Design and implement the data exploration layer
Create and execute queries by using a compute solution that leverages SQL serverless and Spark cluster
Recommend and implement Azure Synapse Analytics database templates
Push new or updated data lineage to Microsoft Purview
Browse and search metadata in Microsoft Purview Data Catalog
Develop data processing (40–45%)
Ingest and transform data
Design and implement incremental loads
Transform data by using Apache Spark
Transform data by using Transact-SQL (T-SQL) in Azure Synapse Analytics
Ingest and transform data by using Azure Synapse Pipelines or Azure Data Factory
Transform data by using Azure Stream Analytics
Cleanse data
Handle duplicate data
Avoiding duplicate data by using Azure Stream Analytics Exactly Once Delivery
Handle missing data
Handle late-arriving data
Split data
Shred JSON
Encode and decode data
Configure error handling for a transformation
Normalize and denormalize data
Perform data exploratory analysis
Develop a batch processing solution
Develop batch processing solutions by using Azure Data Lake Storage, Azure Databricks, Azure Synapse Analytics, and Azure Data Factory
Use PolyBase to load data to a SQL pool
Implement Azure Synapse Link and query the replicated data
Create data pipelines
Scale resources
Configure the batch size
Create tests for data pipelines
Integrate Jupyter or Python notebooks into a data pipeline
Upsert data
Revert data to a previous state
Configure exception handling
Configure batch retention
Read from and write to a delta lake
Develop a stream processing solution
Create a stream processing solution by using Stream Analytics and Azure Event Hubs
Process data by using Spark structured streaming
Create windowed aggregates
Handle schema drift
Process time series data
Process data across partitions
Process within one partition
Configure checkpoints and watermarking during processing
Scale resources
Create tests for data pipelines
Optimize pipelines for analytical or transactional purposes
Handle interruptions
Configure exception handling
Upsert data
Replay archived stream data
Manage batches and pipelines
Trigger batches
Handle failed batch loads
Validate batch loads
Manage data pipelines in Azure Data Factory or Azure Synapse Pipelines
Schedule data pipelines in Data Factory or Azure Synapse Pipelines
Implement version control for pipeline artifacts
Manage Spark jobs in a pipeline
Secure, monitor, and optimize data storage and data processing (30–35%)
Implement data security
Implement data masking
Encrypt data at rest and in motion
Implement row-level and column-level security
Implement Azure role-based access control (RBAC)
Implement POSIX-like access control lists (ACLs) for Data Lake Storage Gen2
Implement a data retention policy
Implement secure endpoints (private and public)
Implement resource tokens in Azure Databricks
Load a DataFrame with sensitive information
Write encrypted data to tables or Parquet files
Manage sensitive information
Monitor data storage and data processing
Implement logging used by Azure Monitor
Configure monitoring services
Monitor stream processing
Measure performance of data movement
Monitor and update statistics about data across a system
Monitor data pipeline performance
Measure query performance
Schedule and monitor pipeline tests
Interpret Azure Monitor metrics and logs
Implement a pipeline alert strategy
Optimize and troubleshoot data storage and data processing
Compact small files
Handle skew in data
Handle data spill
Optimize resource management
Tune queries by using indexers
Tune queries by using cache
Troubleshoot a failed Spark job
Troubleshoot a failed pipeline run, including activities executed in external services
本コースの特徴を単語単位でまとめました。以下の単語が気になる方は、ぜひ本講座の受講をオススメします。
本講座を受講した皆さんの感想を以下にまとめます。
・Azure Data Engineer Associate (DP-203) を取得しました[2024-04-10に投稿]