【評判】Machine Learning Deep Learning Model Deployment


  • Machine Learning Deep Learning Model Deployment
  • Machine Learning Deep Learning Model Deploymentで学習できる内容
    本コースの特徴
  • Machine Learning Deep Learning Model Deploymentを受講した感想の一覧
    受講生の声

講座情報

    レビュー数

  • ・週間:0記事
  • ・月間:0記事
  • ・年間:1記事
  • ・全期間:1記事
\30日以内なら返金無料/
   Udemyで受講する   

レビュー数の推移

直近6か月以内に本講座のレビューに関して記載された記事はありません。


学習内容

Machine Learning Deep Learning Model Deployment techniques
Simple Model building with Scikit-Learn , TensorFlow and PyTorch
Deploying Machine Learning Models on cloud instances
TensorFlow Serving and extracting weights from PyTorch Models
Creating Serverless REST API for Machine Learning models
Deploying tf-idf and text classifier models for Twitter sentiment analysis
Deploying models using TensorFlow js and JavaScript
Machine Learning experiment and deployment using MLflow

詳細

In this course you will learn how to deploy Machine Learning Deep Learning Models using various techniques.  This course takes you beyond model development and explains how the model can be consumed by different applications with hands-on examples


Course Structure:

  1. Creating a Classification Model using Scikit-learn

  2. Saving the Model and the standard Scaler

  3. Exporting the Model to another environment - Local and Google Colab

  4. Creating a REST API using Python Flask and using it locally

  5. Creating a Machine Learning REST API on a Cloud virtual server

  6. Creating a Serverless Machine Learning REST API using Cloud Functions

  7. Building and Deploying TensorFlow and Keras models using TensorFlow Serving

  8. Building and Deploying  PyTorch Models

  9. Converting a PyTorch model to TensorFlow format using ONNX

  10. Creating REST API for Pytorch and TensorFlow Models

  11. Deploying tf-idf and text classifier models for Twitter sentiment analysis

  12. Deploying models using TensorFlow.js and JavaScript

  13. Tracking Model training experiments and deployment with MLFLow

  14. Running MLFlow on Colab and Databricks

Appendix - Generative AI - Miscellaneous Topics.

  • OpenAI and the history of GPT models

  • Creating an OpenAI account and invoking a text-to-speech model from Python code

  • Invoking OpenAI Chat Completion, Text Generation, Image Generation models from Python code

  • Creating a Chatbot with OpenAI API and ChatGPT Model using Python on Google Colab

  • ChatGPT, Large Language Models (LLM) and prompt engineering

Python basics and Machine Learning model building with Scikit-learn will be covered in this course.  This course is designed for beginners with no prior experience in Machine Learning and Deep Learning


You will also learn how to build and deploy a Neural Network using TensorFlow Keras and PyTorch. Google Cloud (GCP) free trial account is required to try out some of the labs designed for cloud environment.


\目次や無料視聴も掲載中/
他の情報を確認する

本コースの特徴

本コースの特徴を単語単位でまとめました。以下の単語が気になる方は、ぜひ本講座の受講をオススメします。


講座
こと
受講
基本
開発
React
技術
英語
Python
note
ため
warn
内容
Go
基礎
よう
入門
学習
実装
試験
Udemy
時間
業務
経験
資料
アプリ
アプリケション
エンジニア
テスト
作成

受講者の感想

本講座を受講した皆さんの感想を以下にまとめます。


ない
良い
広く
やすい
高い

レビューの一覧

 ・新入社員に向けて私が3年間で受講したUdemyの講座を紹介する[2024-05-29に投稿]

udemyで受講