【評判】LangChain- Develop LLM powered applications with LangChain


  • LangChain- Develop LLM powered applications with LangChain
  • LangChain- Develop LLM powered applications with LangChainで学習できる内容
    本コースの特徴
  • LangChain- Develop LLM powered applications with LangChainを受講した感想の一覧
    受講生の声

講座情報

    レビュー数

  • ・週間:1記事
  • ・月間:1記事
  • ・年間:2記事
  • ・全期間:2記事
\30日以内なら返金無料/
   Udemyで受講する   

レビュー数の推移

本講座のレビューに関して記載された記事数の「直近6カ月の推移」を以下のグラフにまとめました。


Month Progress
12月
1月
2月
3月 1
4月
5月 1
レビュー数

学習内容

Become proficient in LangChain
Have 3 end to end working LangChain based generative AI applications
Prompt Engineering Theory: Chain of Thought, ReAct, Few Shot prompting and understand how LangChain is build under the hood
Understand how to navigate inside the LangChain opensource codebase
Large Language Models theory for software engineers
LangChain: Lots of chains Chains, Agents, DocumentLoader, TextSplitter, OutputParser, Memory
RAG, Vectorestores/ Vector Databasrs (Pinecone, FAISS)
Model Context Protocol

詳細

COURSE WAS RE-RECORDED and supports- LangChain Version 0.3.0


Welcome to first LangChain Udemy course - Unleashing the Power of LLM!
This  course is designed to teach you how to QUICKLY harness the power the LangChain library for LLM applications.
This course will equip you with the skills and knowledge necessary to develop cutting-edge LLM solutions for a diverse range of topics.

Please note that this is not a course for beginners. This course assumes that you have a background in software engineering and are proficient in Python. I will be using Pycharm IDE but you can use any editor you'd like since we only use basic feature of the IDE like debugging and running scripts .

In this course, you will embark on a journey from scratch to building a real-world LLM powered application using LangChain.
We are going to do so by build 3 main applications:

  1. Ice Breaker- LangChain agent that given a name, searches in google to find Linkedin and twitter profiles, scrape the internet for information about a name you provide and generate a couple of personalized ice breakers to kick off a conversation with the person.

  2. Documentation Helper- Create chatbot over a python package documentation. (and over any other data you would like)

  3. A slim version of ChatGPT Code-Interpreter

  4. Prompt Engineering Theory Section

  5. Introduction to LangGraph

  6. Introduction to Model Context Protocol (MCP)



The topics covered in this course include:

  • LangChain

  • LLM + GenAI History

  • LLMs: Few shots prompting, Chain of Thought, ReAct prompting

  • Chat Models

  • Open Source Models

  • Prompts, PromptTemplates, langchainub

  • Output Parsers, Pydantic Output Parsers

  • Chains: create_retrieval_chain, create_stuff_documents_chain

  • Agents, Custom Agents, Python Agents, CSV Agents, Agent Routers

  • OpenAI Functions, Tool Calling

  • Tools, Toolkits

  • Memory

  • Vectorstores (Pinecone, FAISS)

  • RAG (Retrieval Augmentation Generation)

  • DocumentLoaders, TextSplitters

  • Streamlit (for UI)

  • LCEL

  • LangSmith

  • Intro to LangGraph

  • FireCrawl

  • GIST of Cursor IDE 

  • Cursor Composter

  • Curser Chat

  • MCP - Model Context Protocol & LangChain Ecosystem


Throughout the course, you will work on hands-on exercises and real-world projects to reinforce your understanding of the concepts and techniques covered. By the end of the course, you will be proficient in using LangChain to create powerful, efficient, and versatile LLM applications for a wide array of usages.

DISCLAIMERS

  1. Please note that this is not a course for beginners. This course assumes that you have a background in software engineering and are proficient in Python.
    I will be using Pycharm IDE but you can use any editor you'd like since we only use basic feature of the IDE like debugging and running scripts.

  2. The first project of the course (Ice-Breaker) requires usage of 3rd party APIs-
    Scrapin / ProxyURL, Tavily, Twitter API  which are generally paid services.
    All of those 3rd parties have a free tier we will use to create stub responses development and testing.


\目次や無料視聴も掲載中/
他の情報を確認する

本コースの特徴

本コースの特徴を単語単位でまとめました。以下の単語が気になる方は、ぜひ本講座の受講をオススメします。


こと
生成
クイズ
よう
Agent
the
LLM
RAG
定義
Readum
indextsx
実装
LangChain
以下
Quiz
入力
Supervisor
エジェント
ユザ
実行
開発
AI
quiz
これ
note
retriever
管理
difficulty
questioncount
ペジ

受講者の感想

本講座を受講した皆さんの感想を以下にまとめます。


やすい
いい
良い
ほしい
やすく
詳しく
長い
ない
新しい
正しい
高い
すごい
すっごく
なし
にくい
よい
多い
嬉しい
素早く
細かく
詳しい
近い
長く
難しかっ
高く

レビューの一覧

 ・【個人開発】LangGraphを使って読書メモからクイズを生成するアプリを作った話[2025-05-11に投稿]

 ・1週間でLangChainを使えるようになる: Day 1 - LangChainとは[2025-03-20に投稿]

udemyで受講