【評判】【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能Webアプリの構築-


  • 【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能Webアプリの構築-
  • 【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能Webアプリの構築-で学習できる内容
    本コースの特徴
  • 【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能Webアプリの構築-を受講した感想の一覧
    受講生の声

講座情報

    レビュー数

  • ・週間:0記事
  • ・月間:0記事
  • ・年間:0記事
  • ・全期間:1記事
\30日以内なら返金無料/
   Udemyで受講する   

レビュー数の推移

直近6か月以内に本講座のレビューに関して記載された記事はありません。


学習内容

機械学習フレームワークPyTorchの基礎が身につきます。
PyTorchのコードの読み書きができるようになります。
CNN、RNNなどを実装できるようになります。
人工知能アプリを構築し、公開できるようになります。
自分で調べながら、ディープラーニングのコードを実装する力が身につきます。

詳細

本コースのゴールは、PyTorchを使ってディープラーニングが
実装できるようになることです。

PyTorchを使ってCNN(畳み込みニューラルネットワーク)、RNN(再帰型ニューラルネットワーク)などの技術を順を追って幅広く習得し、人工知能を搭載したWebアプリの構築までを行います。

各ディープラーニング技術の要点を解説した上で、PyTorchのコードを基礎から丁寧に解説します。


注: 本コースに先立ちYouTubeでのライブ講義【Live人工知能】がありました。本コースの動画はこのライブ講義をUdemy用に再構成したものになります。


PyTorchはオープンソースの機械学習ライブラリで、簡潔さ、柔軟性、速度のバランスに優れているため人気が急上昇中です。

また、簡潔な記述が可能なため、最新の研究成果の実装によく使われています。

海外を中心にコミュニティ活動が活発で、ネット上の情報が豊富なのもメリットです。


本コースでは開発環境にGoogle Colabを利用するので、環境構築にはほとんど手間がかかりません。

GPUが無料で利用できるので、コードの実行時間も短縮できます。 

効率よくPyTorchを習得できるように、様々な工夫を凝らしています。

PyTorchを包括的に学び、皆さんの技術的な可能性を大きく広げましょう。


————————————————————

本コースの主な内容は以下の通りです。


イントロダクション

→ PyTorchの概要、ディープラーニングの概要、そしてPyTorchの基礎であるTensorについて解説します


PyTorchで実装する簡単なディープラーニング

→ 可能な限りシンプルなコードで、ディープラーニングを実装します


PyTorchの様々な機能

→ 自動微分、DataLoaderなどのPyTorch特有の機能について解説します


畳み込みニューラルネットワーク(CNN)

→ CNNの原理を学んだ上で、CNNによる画像分類をデータ拡張、ドロップアウトとともに実装します


再帰型ニューラルネットワーク(RNN)

→ RNNの原理を学んだ上で、シンプルなRNNの構築、およびRNNによる画像生成を行います


AIアプリのデプロイ

→ 学習済みモデルを活用した人工知能Webアプリを構築します


なお、ディープラーニングの数学的背景については最小限の解説となりますのでご注意ください。

Pythonの基礎についての解説動画はありませんが、テキストがダウンロード可能です。

————————————————————


本コースでは可能な限り丁寧な解説を心がけていますが、ある程度ご自身で調べることも必要になるのでご注意ください。

動画を見るのみでも学習が進められるようになっていますが、可能であればPythonのコードを動かしながら進めることをお勧めします。

コードがダウンロード可能ですので、これをベースに様々なカスタマイズを行うこともお勧めです。



それでは、PyTorchを使って一緒に楽しく本格的な人工知能を学んでいきましょう。


\目次や無料視聴も掲載中/
他の情報を確認する

本コースの特徴

本コースの特徴を単語単位でまとめました。以下の単語が気になる方は、ぜひ本講座の受講をオススメします。


デタ
画像
LSTM
学習
生成
GRU
imgsize
方向
入力
シケンスデタ
作成
Python
seqlength
LSTMGRU
batchsize
import
56
シケンス
ルプ
表示
for
in
評価
損失
結果
10
アンパン
マン
取得
inputsize

受講者の感想

本講座を受講した皆さんの感想を以下にまとめます。


上手く
少なく

評価や口コミ

参考になる受講者の口コミやレビューを以下にまとめます。

  • 良い点

  • ● PyTorchを用いたディープラーニングについてあまり十分な経験のない私にとって、このコースは非常に理解しやすく、実践的な知識を提供してくれました。
  • ● とても分かりやすく、久しぶりに、復習も兼ねて受講いたしましたが、大変勉強になります。
  • ● 機械学習をコーディングする際に、何をやっているのか、中身をしっかり理解していないと、正しい使い方にならないということがわかりました。
  • 悪い点

  • ● 内容は初心者向けで良いが、BGMが苦痛である。
  • ● 資料などが事前に用意されていて準備がしっかりとされていると感じた。
  • ● BGMがなければ星4.5程度に評価できる。

\1から5段階で口コミ掲載中/
もっと口コミや評価をみる

レビューの一覧

 ・PyTorchを使ってLSTMとGRUでアンパンマン画像の生成を比較してみる[2020-12-11に投稿]

udemyで受講